Abstract

A novel electrochemical magnetoimmunosensor for the rapid and sensitive detection of carcinoembryonic antigen (CEA) was fabricated based on a combination of high-efficiency immunomagnetic separation, bifunctional Au-nanoparticle (bi-AuNP) probes, and enzyme catalytic amplification. The reaction carrier magnetic beads (MBs) effectively reduced the toxicity of the complex sample to the working electrode, and the signal carrier bi-AuNP probes loaded a large amount of signal molecules, both of which enhanced the signal-to-noise ratio and further improved the detection sensitivity. A detection limit as low as 0.11 pg/mL was achieved for CEA detection based on the immunomagnetic separation and bi-AuNP probe-based multiamplification strategy, and the strategy was further successfully applied in human serum samples. The transducer was regenerated via a simple washing procedure, which enabled the detection of all samples on a single electrode with high reproducibility. The proposed strategy, which has the merits of high sensitivity, selectivity, and reproducibility exhibits great potential for detection in complex samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.