Abstract
Adaptive immune response is triggered when specific pathogen peptides called epitopes are recognised as exogenous according to the paradigm of self/non-self. To be recognized by immune cells, epitopes have to be exposed (presented) on the surface of the cell. Predicting if a peptide is exposed is important to shed light on the rules that govern immune response and, thus, identify potential targets and design vaccine and drugs. We focused on peptides exposed on cell surface and made accessible to immune system through the MHC Class I complex. Before this can happen, three successive selection steps have to take place: a) Proteasome cleveage, b) TAP Transport, and c) binding to MHC-class I. Starting from a set of 211 host human reference viruses, we computed the set of unique peptides occurring in the correspondent proteomes. Then, we obtained the probability values of Proteasome Cleveage, TAP Transport and Binding to MHC Class I associated to those peptides through established prediction software tools. Such values were analysed in conjunction with two other features that could play a major role: the distance from self, strictly linked to the concept of nullomers, and the sequence entropy, measuring the complexity of the peptide amino acid composition. The analysis confirmed and extended previous results on a larger, more significant and consistent data set; we showed that the higher the distances from self, the higher the score of TAP Transport and binding to MHC class I; no significant association was instead found between distance from self and Proteasome Cleveage. Additionally, amino acid peptide composition entropy was significantly associated with the other features. In particular, higher entropies were linked with higher scores of Proteasome Cleveage, TAP Transport, Binding to MHC Class I, and higher distance from self. The relationship among the three selection steps provided evidence of a tight inter-correlation, clearly suggesting it could be the product of a co-evolutive process. We believe that these results give new insights on the complex processes that regulate peptide presentation through MHC class I, and unveil the mechanisms the allow the immune system to distinguish self and viral non-self peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.