Abstract

The molecular composition of the extracellular matrix in the dorsal capsules of lumbar and thoracic facet joints was analyzed immunohistochemically. To determine whether the immunohistochemical profile of the lumbar joint capsule suggests a role of the capsule in limiting axial rotation of the lumbar motion segment. During axial rotation of the lumbar vertebrae, the axis of rotation shifts toward the facet joints in the direction of rotation. Thus, the capsule of the opposing joint should become tensed and wrap around the inferior articular process. Previous studies suggest that wrap-around ligaments are fibrocartilaginous. However, thoracic joint capsules are largely shielded from such loading and should be purely fibrous. Dorsal capsules were removed from lumbar and thoracic facet joints of six adult cadavers. Specimens were immunolabeled with monoclonal antibodies for collagens, chondroitin, dermatan and keratan sulfates, versican, tenascin, aggrecan and link protein. Antibody binding was detected using the Vectastain ABC 'Elite' peroxidase kit (Vector Laboratories, Inc., Burlingame, CA). Both lumbar and thoracic joint capsules immunolabelled for most glycosaminoglycans and for Type I, III and VI collagens. However, labeling for Type II collagen, chondroitin-6-sulfate, aggrecan, and link protein was restricted to lumbar capsules. Such labeling was constantly seen at entheses and occasionally in the midsubstance. The molecular composition of the lumbar joint capsule suggests that it acts as a fibrocartilaginous, 'wrap-around' ligament that withstands compression in addition to tension during torsional movements of the lumbar spine. It wraps around the inferior articular process as rotation occurs and limits further movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.