Abstract

Immune inhibitory receptors are increasingly acknowledged as potent regulators of immune response, which inhibit the overactivation of immune system and play an important role in maintaining immune homeostasis. In the present study, a novel immunoglobulin superfamily member (CgIgIT2) was identified from the Pacific oyster, Crassostrea gigas. The protein sequence of CgIgIT2 contained one signal peptide, four Ig domains, one fibronectin type III domain, one transmembrane domain, and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and one immunoreceptor tyrosine-based switch motif (ITSM). The mRNA transcripts of CgIgIT2 were widely expressed in all the tested tissues, including haemolymph, gill, mantle, adductor muscle, labial palp, gonad and hepatopancreas, with the highest expression in haemolymph. The mRNA expressions of CgIgIT2 in haemocytes increased significantly at 24, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgIgIT2 protein were mainly detected in granulocytes of haemocytes, which were 1.27-fold and 2.15-fold (p < 0.05) higher than that of semi-granulocytes and agranulocytes, respectively. And CgIgIT2 was mainly located in the membrane and cytoplasm of haemocytes. The recombinant protein of CgIgIT2-4 × Ig (rCgIgIT2-4 × Ig) exhibited binding activity towards multiple pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN), mannose (MAN) and polyinosinic-polycytidylic acid (Poly (I: C)) with the highest affinity for LPS. rCgIgIT2-4 × Ig could also bind Gram-negative bacteria (V. splendidus, V. anguillarum, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), and fungi (Pichia pastoris). In the blocking assay with anti-CgIgIT2 antibody, the mRNA expressions of interleukins (CgIL17-1, CgIL17-3 and CgIL17-6) and tumor necrosis factors (CgTNF-1 and CgTNF-2) in haemocytes all increased significantly at 12 h after V. splendidus stimulation. These results suggested that CgIgIT2 could function as an inhibitor receptor to bind different PAMPs and microbes, as well as inhibit the mRNA expressions of multiple inflammatory cytokines in oysters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call