Abstract
The collection of signature data for system development and evaluation generally requires significant time and effort. To overcome this problem, this paper proposes a detector generation based clonal selection algorithm for synthetic signature set generation. The goal of synthetic signature generation is to improve the performance of signature verification by providing more training samples. Our method uses the clonal selection algorithm to maintain the diversity of the overall set and avoid sparse feature distribution. The algorithm firstly generates detectors with a segmentedr-continuous bits matching rule andP-receptor editing strategy to provide a more wider search space. Then the clonal selection algorithm is used to expand and optimize the overall signature set. We demonstrate the effectiveness of our clonal selection algorithm, and the experiments show that adding the synthetic training samples can improve the performance of signature verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.