Abstract
AbstractWe present a strong form meshless solver for numerical solution of the nonstationary, incompressible, viscous Navier–Stokes equations in two (2D) and three dimensions (3D). We solve the flow equations in their stream function‐vorticity (in 2D) and vector potential‐vorticity (in 3D) formulation, by extending to 3D flows the boundary condition‐enforced immersed boundary method, originally introduced in the literature for 2D problems. We use a Cartesian grid, uniform or locally refined, to discretize the spatial domain. We apply an explicit time integration scheme to update the transient vorticity equations, and we solve the Poisson type equation for the stream function or vector potential field using the meshless point collocation method. Spatial derivatives of the unknown field functions are computed using the discretization‐corrected particle strength exchange method. We verify the accuracy of the proposed numerical scheme through commonly used benchmark and example problems. Excellent agreement with the data from the literature was achieved. The proposed method was shown to be very efficient, having relatively large critical time steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.