Abstract

This paper concerns the development of a new Cartesian grid / immersed boundary (IB) method for the computation of incompressible viscous flows in irregular geometries. In IB methods, the computational grid is not aligned with the irregular boundary, and of upmost importance for accuracy and stability is the discretization in cells which are “cut" by the boundary. In this paper, we present an IB method (the LS-STAG method) based on the Cartesian MAC method where the irregular boundary is represented by its level-set function. This implicit representation of the immersed boundary enables us to discretize efficiently the fluxes in the cut-cells by imposing the strict conservation of total kinetic energy at the discrete level. The accuracy and robustness of our method are assessed on benchmark flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.