Abstract

Vertical axis tidal turbines (VATTs) are perceived to be an attractive alternative to their horizontal axis counterparts in tidal streams due to their omni-directionality. The accurate prediction of VATTs demands a turbulence simulation approach that is able to predict accurately flow separation and vortex shedding and a numerical method that can cope with moving boundaries. Thus, in this study an immersed boundary-based large-eddy simulation (LES-IB) method is refined to allow accurate simulation of the blade vortex interaction of VATTs. The method is first introduced and validated for a VATT subjected to laminar flow. Comparisons with highly-accurate body-fitted numerical models results demonstrate the method’s ability of reproducing accurately the performance and fluid mechanics of the chosen VATT. Then, the simulation of a VATT under turbulent flow is performed and comparisons with data from experiments and results from RANS-based models demonstrate the accuracy of the method. The vortex-blade interaction is visualised for various tip speed ratios and together with velocity spectra detailed insights into the fluid mechanics of VATTs are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call