Abstract

A method to design finite elements that imbricate with each other while being assembled, denoted as imbricate finite element method, is proposed to improve the smoothness and the accuracy of the approximation based upon low order elements. Although these imbricate elements rely on triangular meshes, the approximation stems from the shape functions of bilinear quadrilateral elements. These elements satisfy the standard requirements of the finite element method: continuity, delta function property, and partition of unity. The convergence of the proposed approximation is investigated by means of two numerical benchmark problems comparing three different schemes for the numerical integration including a cell-based smoothed FEM based on a quadratic shape of the elements edges. The method is compared to related existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.