Abstract

Dental implant surgery is an effective method for remediating the loss of teeth. Robot is expected to increase the accuracy of dental implant surgery. However, most of them are industrial serial robot, with low stiffness and non-unique inverse kinematic solution, which may reduce the success rate and safety of robotic surgery. Compared to serial robot, parallel robot is more stiffness and has unique inverse kinematic. However, its workspace is small, which may not meet surgical requirements. Therefore, a novel hybrid robot dedicated to dental implant is proposed. The hybrid robot is composed of three translation joints, two revolute joints, and Stewart parallel manipulator. Stewart is used for performing surgical operation, while the joints are used for enlarging the workspace of Stewart. In order to ensure the safety of robot motion, physical human-robot interaction based on a variable admittance controller is applied in the robotic system. In addition, considering the small workspace of Stewart, an optimal model is proposed to minimize the joint movement of Stewart in adjusting the orientation of drill bit. Phantom experiments were carried out based on the prototype robot. In the experiments, the optimal model could be solved after 20 iterations, finding an ideal joint configuration. The proposed variable admittance controller could enhance comfort level effectively. The accuracy of robot is evaluated by angle, entry and exit deviation, which are 0.74 ± 0.25°, 0.93 ± 0.28mm, and 0.96 ± 0.23mm, respectively. The phantom experiments validate the functionality of the proposed hybrid robot. The satisfactory performance makes it more widely used in the practical dental implant surgery in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.