Abstract

In this paper, we propose an image super-resolution (resolution enhancement) algorithm that takes into account inaccurate estimates of the registration parameters and the point spread function. These inaccurate estimates, along with the additive Gaussian noise in the low-resolution (LR) image sequence, result in different noise level for each frame. In the proposed algorithm, the LR frames are adaptively weighted according to their reliability and the regularization parameter is simultaneously estimated. A translational motion model is assumed. The convergence property of the proposed algorithm is analyzed in detail. Our experimental results using both real and synthetic data show the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.