Abstract
Image retrieval is one of the most interesting and fastest growing research areas in all fields. It is an effective and efficient tool for managing large image databases. In most Content-Based Image Retrieval (CBIR) systems, an image is represented by a set of low-level visual features; hence a direct correlation with high-level semantic information will be absent. Therefore, a gap exists between high-level information and low-level features, which is the main reason that hinders the improvement of the image retrieval accuracy. In this work, main focus is on the semantic based image retrieval system using Gray Level Co-occurrence Matrix (GLCM) for texture feature extraction. Based on the texture features, semantic interpretations are given to the extracted textures. The images are retrieved according to user satisfaction and thereby reduce the semantic gap between low level features and high level features.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.