Abstract
For the influence of poisson noise images, in order to get rid of poisson noise, this paper put forward image reconstruction method by using multiscale compressed sensing. the algorithm can approximate the optimal sparse representation of the image edge details such as the characteristics of theShearlet domain based multi-scale compressed sensing method. The image is decomposed into the high-frequency subbands byShearlet, and the compressed sensing is applied into each subband to reconstruct the image. In this paper, A total variation of RL iterative algorithm constructed by nonlinear projection algorithm based on closed convex set is explored as the reconstruction method, which use derivation of the nonlinear projection instead of total variation. In mathematics, Shearlet has been proved to be a better tool for edge characterization than traditional wavelet. By using the nonlinear projection scheme to constrain the residual coefficients in the Shearlet domain, a better estimation can be obtained from the Shearlet representation. Numerical examples show that the denoising effect of these methods is very good, which is better than the correlation method based on Curvelet transform. In addition, the number of iterations required by our scheme is far less than that of our competitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Circuits, Systems and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.