Abstract
To improve the recognition accuracy of coal gangue images with the back propagation (BP) neural network, a coal gangue image recognition method based on BP neural network and ASGS-CWOA (ASGS-CWOA-BP) was proposed, which makes two key contributions. Firstly, a new feature extraction method for the unique features of coal and gangue images is proposed, known as “Encircle–City Feature”. Additionally, a method that applied ASGS-CWOA to optimize the parameters of the BP neural network was introduced to address to the issue of its low accuracy in coal gangue image recognition, and a BP neural network with a simple structure and reduced computational consumption was designed. The experimental results showed that the proposed method outperformed the other six comparison methods, with recognition of 95.47% and 94.37% in the training set and the test set, respectively, showing good symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.