Abstract
This paper proposes a no-reference image assessment approach (IQA) based on saliency map in the space domain of the image. The saliency map of the image is extracted by Itti model at first. Next, the saliency-map weighted normalized image is used to get the histogram of the image, then the histogram is modeled by generalized gaussian distribution and the parameter of the generalized gaussian distribution is estimated by parameter estimating approach. Parameters of the generalized gaussian distribution are used as the feature vector for the training and testing image. The feature vectors of the testing image are fed to support vector regresion machine to evaluate the image quality score. Experimental results show that our approach outperforms the recent method of no-reference IQA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.