Abstract
Abstract The purpose of this study is to obtain a margin of safety for material and process parameters in sheet metal forming. Commonly applied forming criteria are difficult to comprehensively evaluate the forming quality directly. Therefore, an image-driven criterion is suggested for uncertainty parameter identification of sheet metal forming. In this way, more useful characteristics, material flow, and distributions of safe and crack regions, can be considered. Moreover, to improve the efficiency for obtaining sufficient statistics of Approximate Bayesian Computation (ABC), a manifold learning-assisted ABC uncertainty inverse framework is proposed. Based on the framework, the design parameters of two sheet metal forming problems, an air conditioning cover and an engine inner hood, are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.