Abstract

An image-based microscale analysis was conducted by using finite element method (FEM) to simulate the thermal residual stresses in directionally solidified eutectic (DSE) oxide ceramic composites from the thermal expansion and elastic properties and the microstructure features of the constituent phases. This microscale analysis allows a real simulation of morphologies of constituent phases such as size, array and shape. Meanwhile, this model can be applied not only for the calculation of thermal residual stresses, but also for the calculation of mechanical properties. In this work, simulations focus on the distribution of thermal residual stresses in the directionally solidified eutectic (DSE) Al2O3/ Y3Al5O12 (YAG) ceramic composite. A good agreement between simulated and measured thermal residual stresses was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.