Abstract

A field-theoretic formulation of the exponential-operator technique is applied to a nonperturbative Hamiltonian eigenvalue problem in electrodynamics, quantized in light-front coordinates. Specifically, we consider the dressed-electron state, without positron contributions but with an unlimited number of photons, and compute its anomalous magnetic moment. A simple perturbative solution immediately yields the Schwinger result of α/2π. The nonperturbative solution, which requires numerical techniques, sums a subset of corrections to all orders in α and incorporates additional physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.