Abstract

The first step towards applying isogeometric analysis techniques to solve PDE problems on a given domain consists in generating an analysis-suitable mapping operator between parametric and physical domains with one or several patches from no more than a description of the boundary contours of the physical domain. A subclass of the multitude of the available parameterization algorithms are those based on the principles of Elliptic Grid Generation (EGG) which, in their most basic form, attempt to approximate a mapping operator whose inverse is composed of harmonic functions. The main challenge lies in finding a formulation of the problem that is suitable for a computational approach and a common strategy is to approximate the mapping operator by means of solving a PDE-problem. PDE-based EGG is well-established in classical meshing and first generalization attempts to spline-based descriptions (as is mandatory in IgA) have been made. Unfortunately, all of the practically viable PDE-based approaches impose certain requirements on the employed spline-basis, in particular global C≥1-continuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.