Abstract

We consider an equation of the type $A(u+k*u)=f$, where $A$ is a linear second-order elliptic operator, $k$ is a scalar function depending on time only and $k*u$ denotes the standard time convolution of functions defined on ${{\bf R}}$ with their supports in $[0,T]$. The previous equation is endowed with dynamical boundary conditions. Assuming that the kernel $k$ is unknown and information is given, under suitable additional conditions $k$ can be recovered and global existence, uniqueness and continuous dependence results can be shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.