Abstract

A new method is proposed to identify the joint structural parameters of complex systems using a frequency response function (FRF)-based substructuring method and an optimization technique. The FRF method is used to estimate the joint parameters indirectly by minimizing the difference between the reference and calculated responses using a gradient-based optimization technique with analytical gradient information. To assess the robustness of the identification method with respect to noisy input data, FRFs contaminated by uniformly distributed random noise were tested in a numerical example. The effects of the random noise and the magnitude of the connection stiffness values on the accuracy of the method were investigated while identifying the joint parameters. When the FRFs were contaminated with random noise, the proposed procedure performed well when used to identify the stiffness values, but the accuracy of identification is deteriorative when used to identify the damping coefficients. The joint parameters of a real bolted structure were also identified by the proposed method. The results show that it can be applied successfully to real structures, and that a hybrid approach using both calculated and measured FRFs in the substructure model can enhance the quality of the identification results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.