Abstract

AbstractRecent studies show that the western boundary acts as a “graveyard” for westward-propagating ocean eddies. However, how the eddy energy incident on the western boundary is dissipated remains unclear. Here we investigate the energetics of eddy–western boundary interaction using an idealized MIT ocean circulation model with a spatially variable grid resolution. Four types of model experiments are conducted: 1) single eddy cases, 2) a sea of random eddies, 3) with a smooth topography, and 4) with a rough topography. We find significant dissipation of incident eddy energy at the western boundary, regardless of whether the model topography at the western boundary is smooth or rough. However, in the presence of rough topography, not only the eddy energy dissipation rate is enhanced, but more importantly, the leading process for removing eddy energy in the model switches from bottom frictional drag as in the case of smooth topography to viscous dissipation in the ocean interior above the rough topography. Further analysis shows that the enhanced eddy energy dissipation in the experiment with rough topography is associated with greater anticyclonic, ageostrophic instability (AAI), possibly as a result of lee wave generation and nonpropagating form drag effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call