Abstract

Most of potential diagnostic and therapeutic nanoparticles fail to reach clinical trials because assessment of their ‘drug-like’ properties is often overlooked during the discovery stage. This compromises the results of cell culture and animal experiments, making them insufficient to evaluate the lead candidates for testing on patients. In this study, we demonstrate the potential of high-resolution inductively coupled plasma mass spectrometry (ICP-MS) as a nanoparticle qualification tool. Using novel gold nanoparticles stabilized by N-heterocyclic carbenes as test nanoparticles, it was shown that important prerequisites for biomedical applications, such as resistance to the action of human serum milieu or reactivity toward serum biomolecules, can be reliably assessed by recording the signals of gold or sulfur isotopes. Implemented during the screening stage, the method would provide benefits in shortening timelines and reducing cost for selection and initial testing of medicinal nanoparticle candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.