Abstract

Chang’E-7 will be launched around 2026 to explore resources at the lunar south pole. Glaciers are suitable scenes on the earth for lunar penetrating radar verification. In the verification experiment, ice-penetrating signals are inevitably polluted by noise, affecting the accuracy and reliability of glacier detection. This paper proposes a denoising method for ice-penetrating signals based on the combination of whale optimization algorithm (WOA), variational mode decomposition (VMD), and the improved Bhattacharyya distance (BD). Firstly, a fitness function for WOA is established based on permutation entropy (PE), and the number of decomposition modes K and the quadratic penalty factor α in the VMD are optimized using WOA. Then, VMD is performed on the signal to obtain multiple intrinsic mode functions (IMFs). Finally, according to the BD, the relevant IMFs are selected for signal reconstruction and denoising. The simulation results indicate the strengths of this method in enhancing the signal-to-noise ratio (SNR), and its performance is better than empirical mode decomposition (EMD). Experiments on the detected signals of the Mengke Glacier No. 29 indicate that the WOA-VMD-BD method can efficiently eliminate noise from the data and procure well-defined layered profiles of the glacier. The research in this paper helps observe the layered details of the lunar regolith profile and interpret the data in subsequent space exploration missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.