Abstract

This paper presents a two-channel 12-bit current-steering digital-to-analog converter (DAC) for I and Q signal paths in a wireless transmitter. The proposed DAC has a full-scale output current with an adjusting range of 2 to 10 mA. A gain matching circuit is proposed to reduce gain mismatch between the I and Q channels. The tuning range is ±24% of full scale and the minimum resolution is 1/16 LSB. To further improve its dynamic performance, the switch driver and current cell are optimized to minimize glitch energy. The chip has been processed in a standard 0.13 μm CMOS technology. Gain mismatch between a I-channel DAC and a Q-channel DAC is measured to be approximately 0.13%. At 120-MSPS sample rate for 1 MHz sinusoidal signal, the spurious free dynamic range (SFDR) is 75 dB. The total power dissipation is 62 mW and has an active area of 1.08 mm2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.