Abstract
AbstractThe heptafluoroisopropyl group is emerging as a privileged chemotype in contemporary agrochemistry and features prominently in the current portfolio of leading insecticides. To reconcile the expansive potential of this module with the synthetic challenges associated with preparing crowded, fluorinated motifs, I(I)/I(III) catalysis has been leveraged. Predicated on in situ generation of p-TolIF2, this route enables the direct difluorination of α-trifluoromethyl-β-difluorostyrenes in a single operation. This formal addition of fluorine across the alkene π-bond is efficient (up to 91% yield) and is compatible with a broad range of functional groups. The ArCF(CF3)2 moiety is conformationally preorganised, with the C(sp3)–F bond coplanar to the framework of the aryl ring, thereby minimising 1,3-allylic strain. Moreover, orthogonal multipolar C–F···C=O interactions have been identified in a phthalimide derivative. It is envisaged that this programmed vicinal difluorination enabled by a hypervalent iodine species will find application in functional molecule design in a broader sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.