Abstract
BackgroundReceptor activator of NF-κB ligand (RANKL) facilitates differentiation of osteoclast precursors into osteoclasts, resulting in bone erosion in rheumatoid arthritis (RA) patients. Fibroblast-like synoviocytes (FLS) are the main cells for producing RANKL. Signal transducer and activator of transcription 3 (STAT3) signaling is activated in FLS of RA patients (RA-FLS), which has been linked to RANKL production. A two-herb formula (RL) comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos is traditionally used for treating RA in China. We have found that a standardized ethanolic extract of RL (RLE for short) alleviates bone erosion in collagen-induced arthritis (CIA) rats. PurposeThis study aimed to determine whether RLE inhibits RANKL production and osteoclastogenesis in cell and rat models, and to explore the involvement of the STAT3 pathway in this inhibition. Study Design and MethodsA CIA rat model, interleukin-6/soluble interleukin-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS and a co-culture system (IL-6/sIL-6R-stimulated RA-FLS/peripheral blood mononuclear cells) were used to evaluate the effects of RLE. Micro-computed tomography analysis was used to observe bone erosion in CIA rats. Tartrate-resistant acid phosphatase staining was used to evaluate osteoclastogenesis. Western blotting and ELISA assays were employed to examine protein levels. RT-qPCR was used to detect mRNA levels. STAT3-over-activated RA-FLS were used to investigate the involvement of STAT3 signaling in the anti-osteoclastogenic effects of RLE. ResultsRLE alleviated bone erosion in joints of CIA rats. In both synovial tissues of CIA rats and IL-6/sIL-6R-stimulated RA-FLS, RLE downregulated the protein level of RANKL. In the co-culture system, RLE significantly and dose-dependently inhibited IL-6/sIL-6R-induced osteoclastogenesis. Mechanistic studies revealed that RLE lowered the protein level of phospho-STAT3 (Tyr705) in synovial tissues of CIA rats. In IL-6/sIL-6R-stimulated RA-FLS, RLE inhibited the activation/phosphorylation of a STAT3 upstream kinase Janus kinase 2 (Tyr1007/1008) and STAT3 (Tyr705), decreased the nuclear localization of STAT3, lowered mRNA levels of STAT3-transcriptionally regulated genes IL-1β and TNF-α. RLE's inhibitory effects on RANKL production in RA-FLS gradually decreased when IL-6/sIL-6R doses increased. Over-activation of STAT3 diminished the inhibitory effects of RLE on RANKL production in IL-6/sIL-6R-stimulated RA-FLS, and attenuated the anti-osteoclastogenic effects of RLE in the co-culture system. ConclusionWe, for the first time, demonstrated that suppressing STAT3 signaling contributes to the inhibition of RANKL production and osteoclastogenesis, and thereby supports the mechanisms responsible for the reduction in bone erosion in RLE-treated CIA rats. This study provides further pharmacological groundwork for developing RLE as a modern anti-arthritic drug, and supports the notion that targeting STAT3 signaling is a viable strategy for managing bone erosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.