Abstract

We investigate an h-p version of the continuous Petrov–Galerkin time stepping method for nonlinear delay differential equations with vanishing delays. We derive a priori error estimates in the $$L^{2}$$ -, $$H^{1}$$ - and $$L^\infty $$ -norm that are completely explicit with respect to the local time steps, the local polynomial degrees, and the local regularity of the exact solution. Moreover, we show that the h-p version continuous Petrov–Galerkin scheme based on geometrically refined time steps and on linearly increasing approximation orders achieves exponential rates of convergence for solutions with start-up singularities. The theoretical results are illustrated by some numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.