Abstract

This article investigates a fixed-time simultaneous arrival (FTSA) problem in terms of the equilibrium of path lengths of unmanned vehicles. A novel trajectory elliptical homotopy method (TEHM) is designed to solve the FTSA problem of unmanned vehicles in a multi-objective constrained environment. Considering the constraints of obstacle avoidance and kinematics of unmanned vehicles, the trajectories elliptical homotopy is selected for path planning. The obtained trajectory homotopy guarantees obstacle avoidance and motion stability at the same time. To handle the non-cooperative and dynamic obstacle avoidance, a trajectory elliptical homotopy decomposition (TEHD) algorithm is proposed with an FTSA constraint. Based on the TEHM and TEHD, a multiple unmanned vehicle fixed-time regular-triangle formation algorithm is designed and implemented on real vehicles. Simulations and experiments validate the performance of the proposed methods and show how fixed-time arrival formation under obstacles and kinematic constraints was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call