Abstract

The independent living of the elderly population is very much of a concern and threaten due to their high tendency in falling. As the worldwide aging population grows tremendously, there is a need of reliable fall detection solution which operates in real-time at high accuracy and supports large scale implementation. Highly promising tool like Field Programmable Gate Array (FPGA) had been commonly used as a hardware accelerator in many emerging embedded vision based systems due to its high performance and low power consumption. As a result, it is the main objective of this work to propose a solution of FPGA-based visual based fall detection to meet the stringent real-time requirement. Our solution implemented in low-cost FPGA is able to achieve a performance of 58.36fps at VGA resolutions (640×480) through the exploitation of the parallel and pipeline architecture of FPGA. Besides, the optimization techniques that we proposed are able to reduce up to 33.33% of the dynamic power consumption of the system. The outputs of this work demonstrate the great impacts and potentials of FPGA's flexibility and scalability in the future healthcare industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.