Abstract

Reconfigurable computers (RCs) that combine generalpurpose processors with field-programmable gate arrays (FPGAs) are now available. In these exciting systems, the FPGAs become reconfigurable application-specific processors (ASPs). Specialized high-level language (HLL) to hardware description language (HDL) compilers allow these ASPs to be reconfigured using HLLs. In our research we describe a novel toroidal data structure and scheduling algorithm that allows us to use an HLL-to-HDL environment to implement a high-performance ASP that reduces multiple, variable-length sets of 64-bit floating-point data. We demonstrate the effectiveness of our ASP by using it to accelerate a sparse matrix iterative solver. We compare actual wall clock run times of a production-quality software iterative solver with an ASP-augmented version of the same solver on a current generation RC. Our ASP-augmented solver runs up to 2.4 times faster than software. Estimates show that this same design can run over 6.4 times faster on a next-generation RC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.