Abstract

With the arrival of partial reconfiguration technology, modern FPGAs support tasks that can be loaded in (removed from) the FPGA individually without interrupting other tasks already running on the same FPGA. Many online task placement algorithms designed for such partially reconfigurable systems have been proposed to provide efficient and fast task placement. A new approach for online placement of modules on reconfigurable devices, by managing the free space using a run-length based representation. This representation allows the algorithm to insert or delete tasks quickly and also to calculate the fragmentation easily. In the proposed FPGA model, the CLBs are numbered according to reflected binary gray space filling curve model. The search algorithm will quickly identify a placement for the incoming task based on first fit mode or a fragmentation aware best fit mode. Simulation experiments indicate that the proposed techniques result in a low ratio of task rejection and high FPGA utilization compared to existing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.