Abstract
The Hessian matrix-based edge detection algorithm of Dr. Carsten Steger has the advantages of high accuracy and versatility. However, this algorithm has a complex and time-consuming computation process. Large-scale Gaussian convolution also employs a large number of multipliers when implemented on a field programmable gate array (FPGA). To address these problems, an FPGA implementation for Steger’s edge detection algorithm is proposed. This implementation employs pipeline and parallel architectures at both task and data levels for data stream processing. The original kernels of Gaussian convolution are simplified with box-filter to convert the multiplication operation in the convolution into addition, subtraction, or shift operations with the concept of integral image, thereby minimizing the multiplier resources. The proposed FPGA implementation demonstrates a favorable accuracy and anti-noise capability when dealing with different degrees of blur and noise in an image. Therefore, the FPGA implementation can satisfy real-time edge detection requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.