Abstract

We report the design and experimental results of a field-programmable gate array (FPGA)-based real-time ultrasound imaging system that uses a 16-element phased-array capacitive micromachined ultrasonic transducer fabricated using a fusion bonding process. The imaging system consists of the transducer, discrete analog components situated on a custom-made circuit board, the FPGA, and a monitor. The FPGA program consists of five functional blocks: a main counter, transmit and receive beamformer, receive signal pre-processing, envelope detection, and display. No dedicated digital signal processor or personal computer is required for the imaging system. An experiment is carried out to obtain the sector B-scan of a 4-wire target. The ultrasound imaging system demonstrates the possibility of an integrated system-in-a-package solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.