Abstract
MapReduce is a programming framework for distributed systems that is used to automatically parallelize and schedule the tasks to distributed resources. MapReduce is widely used in data centers to process enterprise databases and Big Data. This paper presents a novel MapReduce accelerator platform based on FPGAs that can be used to speedup the processing of the MapReduce data. The proposed platform consists of specialized hardware accelerators for the Map tasks and a shared configurable accelerator for the Reduce tasks. The hardware accelerators for the Map tasks are developed using a modified source-to-source High-level Synthesis (HLS) tool while the Reduce accelerator is based on a novel hashing scheme. The proposed scheme is implemented, mapped and evaluated to a Virtex 7 FGPA. The performance evaluation is based on a benchmark suite that represent typical MapReduce applications and it shows that the proposed scheme can achieve up to 2 orders of magnitude energy reduction compared to General Purpose Processors (GPPs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.