Abstract

A PET scanner based on silicon photomultipliers (SiPMs) has been widely used as an advanced nuclear medicine imaging technique that yields quantitative images of regional in vivo biology and biochemistry. The compact size of the SiPM allows direct one-to-one coupling between the scintillation crystal and the photosensor, yielding better timing and energy resolutions than the light sharing methods that have to be used in photomultiplier tube (PMT) PET systems. To decrease the volume of readout electronics, a front-end multiplexer with position decoder is a common choice for the one-to-one system without a highly integrated application specific integrated circuit (ASIC). However, in this case we cannot measure each crystal's deposited energy inspired by an annihilation photon, so the inter-crystal scatter (ICS) events will lead to the crystal mispositioning and then deteriorate the detector intrinsic resolution. Besides, considering the events rejection within the energy window resulting from the gain dispersion and non-linear outputs of the SiPMs, an energy correction mechanism is needed. Yet, lack of the information of each crystal's energy will introduce large energy correction error for the ICS events. For this issue, an online energy correction mechanism implemented on a Kintext-7 Field Programmable Gate Array (FPGA) device is presented in this paper. Experiments in the laboratory were performed using an 8 × 8 segmented LYSO crystals coupled with an 8 × 8 SiPM (J-series, from ON Semiconductor) array which is under 22Na point source excitation. Test results indicate that both the energy of the non-ICS and ICS events can be precisely corrected and the energy resolution is better than 12 %. We also applied this method to an actual clinical PET scanner under a 68Ge line source to verify its multi-channel reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.