Abstract

Active, self-touch and the passive touch from an external source engage comparable afferent mechanoreceptors on the touched skin site. However, touch directed to glabrous skin compared to hairy skin will activate different types of afferent mechanoreceptors. Despite perceptual similarities between touch to different body sites, it is likely that the touch information is processed differently. In the present study, we used functional magnetic resonance imaging (fMRI) to elucidate the cortical differences in the neural signal of touch representations during active, self-touch and passive touch from another, to both glabrous (palm) and hairy (arm) skin, where a soft brush was used as the stimulus. There were two active touch conditions, where the participant used the brush in their right hand to stroke either their left palm or arm. There were two similar passive, touch conditions where the experimenter used an identical brush to stroke the same palm and arm areas on the participant. Touch on the left palm elicited a large, significant, positive blood-oxygenation level dependence (BOLD) signal in right sensorimotor areas. Less extensive activity was found for touch to the arm. Separate somatotopical palm and arm representations were found in Brodmann area (BA) 3 of the right primary somatosensory cortex (SI) and in both these areas, active stroking gave significantly higher signals than passive stroking. Active, self-touch elicited a positive BOLD signal in a network of sensorimotor cortical areas in the left hemisphere, compared to the resting baseline. In contrast, during passive touch, a significant negative BOLD signal was found in the left SI. Thus, each of the four conditions had a unique cortical signature despite similarities in afferent signaling or evoked perception. It is hypothesized that attentional mechanisms play a role in the modulation of the touch signal in the right SI, accounting for the differences found between active and passive touch.

Highlights

  • The brain receives afferent information from the activation of mechanoreceptors in the skin during interactions with the environment

  • The present study used light brush stroking to elicit cortical responses from glabrous and hairy skin

  • The blood-oxygenation level dependence (BOLD) signal was modulated by the skin site and by the type of stroking, and an interaction was seen in the right SI in BA03 between active and passive stroking of the palm and the arm

Read more

Summary

Introduction

The brain receives afferent information from the activation of mechanoreceptors in the skin during interactions with the environment. There are differences in the types of low-threshold mechanoreceptors found in the glabrous skin of the palm compared to the hairy skin on the arm (for an overview, see Macefield, 2005). The mechanoreceptors on the glabrous skin allow high discriminatory abilities for touch, whereas the input from hairy skin does not give such discrimination. Despite these differences, glabrous and hairy skin are both sensitive to touch; a recent study has shown that psychophysical ratings of the intensity and the pleasantness of touch were not different between the skin of the palm and the arm (McGlone et al, 2012). The study found that using a Touch Perception Task (from Guest et al, 2011), subjects used more sensory descriptors when evaluating touch to the palm, whereas they used more emotional descriptors for touch to the arm, indicating that touch is processed over many cognitive levels

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.