Abstract
Congestion is one of the most important challenges in optical networks. In a Passive Optical Network (PON), the Optical Line Terminal (OLT) is a bottleneck and congestion prone. In this paper, a framework is proposed with Forward Error Correction (FEC) at the IP layer combined with Weighted Round Robin (WRR) at the scheduling level to overcome packet-loss due to congestion in the OLT in order to achieve efficient video multicasting over PON. In the FEC scheme, Reed–Solomon (RS( n, k)) with erasure coding is used, where ( n− k) erroneous symbols per n symbol blocks can be corrected. In our framework, an Internet Protocol TeleVision (IPTV) service provider uses the mentioned RS coding and generates redundant packets from regular IPTV packets in such a way that an Optical Network Unit (ONU) can recover lost packets from received packets, thus resulting in a better video quality. Simulation results show that using the proposed framework, an ONU can recover many lost packets and achieve better video quality under different traffic loads for its users. For instance, the proposed method can reduce packet loss rate by almost 55% and 10% under traffic load 0.9, respectively, compared with the Round Robin (RR) and WRR methods under symmetric traffic load. When High Receivers Queue (HRQ) traffic (i.e., traffic received by many users) is twice Low Receivers Queue (LRQ) traffic (i.e., traffic received by a small number of users), this reduction is almost 86% and 30% under traffic load 0.9. Finally, when LRQ traffic is twice HRQ traffic, the reduction in packet loss rate is almost 70% and 91% at traffic load 0.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.