Abstract

Nitric oxide (NO) is a crucial cell-signaling molecule utilized in numerous physiological and pathological processes. Monitoring cellular levels of NO requires a sensor with sufficient sensitivity, transient recording capability, and biocompatibility. Owing to the large surface area and high catalytic activity of the metal-organic framework, Fe-BTC was used for the modification of screen-printed electrodes (SPEs). This study investigates the electrochemical sensing of NO on modified SPEs. Additionally, the introduction of a cell-adhesive molecule, arginine-glycine-aspartate peptide (RGD), considerably improved the cytocompatibility, resulting in superior cell attachment and growth on the SPE. The Fe-BTC/RGD-modified SPE (Fe-BTC/RGD/SPE) exhibited electrocatalytic NO oxidation at 0.8 V, demonstrating a linear response with a detection limit of 11.88 nM over a wide concentration range (0.17-47.37 μM) and a response time of approximately 0.9 s. Subsequently, the as-obtained Fe-BTC/RGD/SPE was successfully utilized for the real-time detection of NO released from human endothelial cells cultured on the electrode. Therefore, the study undertaken shows remarkable potential of Fe-BTC/RGD/SPE for practical applications in biological processes and clinical diagnostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call