Abstract

BackgroundAdolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may require surgical correction by attaching a rod to the patient’s spine using screws implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the deformity by applying compressive forces across the intervertebral disc spaces while they secure the rod to the vertebra. We were interested to understand how the deformity correction is influenced by increasing magnitudes of surgical corrective forces and what tissue level stresses are predicted at the vertebral endplates due to the surgical correction.MethodsPatient-specific finite element models of the osseoligamentous spine and ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were created using pre-operative computed tomography (CT) scans. The surgically altered spine, including titanium rod and vertebral screws, was simulated. The models were analysed using data for intra-operatively measured compressive forces – three load profiles representing the mean and upper and lower standard deviation of this data were analysed. Data for the clinically observed deformity correction (Cobb angle) were compared with the model-predicted correction and the model results investigated to better understand the influence of increased compressive forces on the biomechanics of the instrumented joints.ResultsThe predicted corrected Cobb angle for seven of the eight FE models were within the 5° clinical Cobb measurement variability for at least one of the force profiles. The largest portion of overall correction was predicted at or near the apical intervertebral disc for all load profiles. Model predictions for four of the eight patients showed endplate-to-endplate contact was occurring on adjacent endplates of one or more intervertebral disc spaces in the instrumented curve following the surgical loading steps.ConclusionThis study demonstrated there is a direct relationship between intra-operative joint compressive forces and the degree of deformity correction achieved. The majority of the deformity correction will occur at or in adjacent spinal levels to the apex of the deformity. This study highlighted the importance of the intervertebral disc space anatomy in governing the coronal plane deformity correction and the limit of this correction will be when bone-to-bone contact of the opposing vertebral endplates occurs.

Highlights

  • Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may require surgical correction by attaching a rod to the patient’s spine using screws implanted in the vertebral bodies

  • In order to determine the effect of varying surgical corrective forces on the predicted deformity correction, these models were analysed using statistical data for intra-operative compressive forces measured in a recent experimental study by our group [10]

  • A comparison of the vertebral and intervertebral disc wedge angles in the coronal plane based on the model geometry before and after the surgical correction showed that between 2.6% and 64.5% of the initial coronal deformity (Cobb angle) was due to wedging in the intervertebral discs (Figure 6)

Read more

Summary

Introduction

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may require surgical correction by attaching a rod to the patient’s spine using screws implanted in the vertebral bodies. Surgeons achieve an intraoperative reduction in the deformity by applying compressive forces across the intervertebral disc spaces while they secure the rod to the vertebra. The anterior single rod correction procedure is one possible surgical technique [3] (Figure 1B) for treating scoliosis This procedure involves removing the deformed intervertebral discs, implanting material to promote fusion of the intervertebral joint space and securing metal rods to the spinal vertebra using screws [4]. The surgeon achieves an intra-operative reduction in the patient’s deformity by applying compressive forces across the fused intervertebral disc spaces via pairs of adjacent screws, while securing the rod to the vertebra

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.