Abstract

The finite-difference time-domain (EDTD) technique is being used with increasing frequency for modeling the scattering characteristics of buried objects. The FDTD has, for some time, been able to model the near-zone scattered fields of buried objects due to near-zone sources. This is adequate for modeling the scattered returns of ground-based ground-penetrating radar, but not for airborne radar. This paper describes an FDTD-compatible technique whereby far-zone scattered fields of objects buried in a stratified ground can be calculated. This technique uses the equivalence principle to model a buried object in terms of equivalent electric and magnetic currents. The fields radiated by these currents in the presence of a stratified ground are then calculated using the reciprocity theorem and the well-known field equations for plane waves in a stratified media. Numerical results are presented that show excellent agreement between this technique and both analytical and numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.