Abstract

Reverse correlation of stimulus velocity with eye velocity can be used to infer pursuit latency in a task in which a subject attempts to follow a target undergoing random motion. Using a binocular dual Purkinje image eye tracker equipped with stimulus deflectors, we measured tracking responses to four-dimensional motion, produced by delivering an independent random walk to each eye, analyzing the results in terms of horizontal and vertical vergence and version. High-contrast luminance-defined stimuli produce the shortest latencies (around 100 msec); varying texture contrast increases the delay by approximately 50 msec / log unit. Nulling the first-order luminance contrast in a second-order constrast-modulated target produces a dramatic increase in latency (over 100 msec additional delay), and abolishes the vertical vergence response - the only one of the four types of movement that cannot be executed voluntarily. We propose a model of the system in which a fast reflexive system responds to a limited class of stimuli, while a slower voluntary system is capable of tracking anything that can be seen. Meeting abstract presented at OSA Fall Vision 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.