Abstract

Abstract: Iterative learning control (ILC) of continuous-time nonlinear plants with periodic sampled-data inputs is considered via an extremum seeking approach. ILC is performed without exploiting knowledge about any plant model, whereby the input signal is constructed recursively so that the corresponding plant output tracks a prescribed reference trajectory as closely as possible on a finite horizon. The ILC is formulated in terms of a non-model-based extremum seeking control problem, to which local optimisation methods such as gradient descent and Newton are applicable. Sufficient conditions on convergence to a neighbourhood of the reference trajectory are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.