Abstract

We present new observations of the nuclear star cluster in the central parsec of the Galaxy with the adaptive optics assisted, integral field spectrograph SINFONI on the ESO/VLT. Our work allows the spectroscopic detection of early- and late-type stars to mK ⩾ 16, more than 2 mag deeper than our previous data sets. Our observations result in a total sample of 177 bona fide early-type stars. We find that most of these Wolf Rayet (WR), O-, and B-stars reside in two strongly warped disks between 08 and 12'' from Sgr A*, as well as a central compact concentration (the S-star cluster) centered on Sgr A*. The later type B-stars (mK>15) in the radial interval between 08 and 12'' seem to be in a more isotropic distribution outside the disks. The observed dearth of late-type stars in the central few arcseconds is puzzling, even when allowing for stellar collisions. The stellar mass function of the disk stars is extremely top heavy with a best-fit power law of dN/dm ∝ m−0.45± 0.3. WR/O-stars were formed in situ in a single star formation event ∼6 Myr ago, this mass function probably reflects the initial mass function (IMF). The mass functions of the S-stars inside 08 and of the early-type stars at distances beyond 12'' are compatible with a standard Salpeter/Kroupa IMF (best-fit power law of dN/dm ∝ m−2.15± 0.3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call