Abstract

Here, we describe the utility of a carbon fiber (CF) electrode that is inexpensive, simple, and flexible and can be embedded with elastomeric nanocomposite piezo-resistive sensors fabricated from silicone rubber (Ecoflex) blended with carbon nanotubes (CNTs) and various wt % of silicone thinner to tune the sensitivity and softness range. The performance of the CF electrode was evaluated on the basis of piezo-resistive responses from the sensors subjected to dynamic sinusoidal compressive strains at different levels and frequencies. The responses were positive-pressure effects with rate-dependent asymmetric nonlinear hysteresis characteristics. Developing a mathematical model to describe the rate-dependent asymmetric nonlinear hysteresis behavior is technically impossible; therefore, we employed artificial intelligence-based hysteresis modeling, long short-term memory recurrent neural network, to describe the hysteresis nonlinearity. The debonding strength of the CF electrode was determined in the pull-off testing and was found to be much higher than that of a copper wire electrode. The debonding mechanism was further elucidated via an in situ resistance profile. The importance of a robust conductive interface between a CF electrode and a nanocomposite was experimentally demonstrated. It was found that the inherent piezo-resistance of the CF was negligible compared with the piezo-resistance of the sensor; therefore, the signals from the sensor were free of interference. We believe CF-embedded tunable piezo-resistive sensors could be used in biomedical devices, artificial e-skins, robotic touch applications, and flexible keyboards where the required stretchability of the electrode can be introduced via an appropriate geometrical design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.