Abstract

An extremely high room temperature two-dimensional hole gas (2DHG) drift mobility of 4230 cm2 V−1 s−1 in a compressively strained Ge quantum well (QW) heterostructure grown by an industrial type RP-CVD technique on a Si(001) substrate is reported. The low-temperature Hall mobility and carrier density of this structure, measured at 333 mK, are 777000 cm2 V−1 s−1 and 1.9 × 1011 cm−2, respectively. These hole mobilities are the highest not only among the group-IV Si based semiconductors, but also among p-type III–V and II–VI ones. The obtained room temperature mobility is substantially higher than those reported so far for the Ge QW heterostructures and reveals a huge potential for further application of strained Ge QW in a wide variety of electronic and spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call