Abstract

We introduce an extreme function theory as a novel method by which probabilistic novelty detection may be performed with functions, where the functions are represented by time-series of (potentially multivariate) discrete observations. We set the method within the framework of Gaussian processes (GP), which offers a convenient means of constructing a distribution over functions. Whereas conventional novelty detection methods aim to identify individually extreme data points, with respect to a model of normality constructed using examples of “normal” data points, the proposed method aims to identify extreme functions, with respect to a model of normality constructed using examples of “normal” functions, where those functions are represented by time-series of observations. The method is illustrated using synthetic data, physiological data acquired from a large clinical trial, and a benchmark time-series dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.