Abstract

A boundary treatment for curved walls in lattice Boltzmann method is proposed. The distribution function at a wall node who has a link across the physical boundary is decomposed into its equilibrium and nonequilibrium parts. The equilibrium part is then approximated with a fictitious one where the boundary condition is enforced, and the nonequilibrium part is approximated using a first-order extrapolation based on the nonequilibrium part of the distribution on the neighboring fluid node. Numerical results show that the present treatment is of second-order accuracy, and has well-behaved stability characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.