Abstract

Elementary siphons are useful in the development of a deadlock prevention policy for a discrete event system modeled with Petri nets. This paper proposes an algorithm to iteratively extract a set of elementary siphons in a class of Petri nets, called system of simple sequential processes with resources (S3PR). At each iteration, by a mixed-integer programming (MIP) method, the proposed algorithm finds a maximal unmarked siphon, classifies the places in it, extracts an elementary siphon from the classified places, and adds a new constraint in order to extract the next elementary siphon. This algorithm iteratively executes until no new unmarked siphons can be found. It finally obtains a unique set of elementary siphons and avoids a complete siphon enumeration. A theoretical analysis and examples are given to demonstrate its efficiency and practical potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.