Abstract

Mice lacking the serine protease tissue plasminogen activator (tPA) are resistant to excitotoxin-mediated hippocampal neuronal degeneration. We have used genetic and cellular analyses to study the role of tPA in neuronal cell death. Mice deficient for the zymogen plasminogen, a known substrate for tPA, are also resistant to excitotoxins, implicating an extracellular proteolytic cascade in degeneration. The two known components of this cascade, tPA and plasminogen, are both synthesized in the mouse hippocampus. tPA mRNA and protein are present in neurons and microglia, whereas plasminogen mRNA and protein are found exclusively in neurons. tPA-deficient mice exhibit attenuated microglial activation as a reaction to neuronal injury. In contrast, the microglial response of plasminogen-deficient mice was comparable to that of wild-type mice, suggesting a tPA-mediated, plasminogen-independent pathway for activation of microglia. Infusion of inhibitors of the extracellular tPA/plasmin proteolytic cascade into the hippocampus protects neurons against excitotoxic injury, suggesting a novel strategy for intervening in neuronal degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.